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A new year, a new board, a new chairman. 
Leander van Beek gives us his take on 
what the FMF has become, and how he 
experienced the first few months of his 
board year. 

Assistant professor Daniel Valesin from 
the Johan Bernoulli Institute tells us about 
a classical problem in probability theory. 
Given a sample containing a collection of 
n different coupons, how many sample trials 
do we have to take before we have every 
coupon from the collection? 

Periodiek editor Jonah Stalknecht discusses 
his bachelor thesis in a breathtaking article. 
He explains that the amount of muons 
created in cosmic ray air showers does not 
correspond to the predictions of our best 
models. Due to the high energies involved 
there is a lot of freedom to come up with 
new physical ideas.
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From the Editor in Chief

Dear Periodiek reader, it feels good to say this for the first 
time as the new editor in chief. As I am writing this, we 
are in the middle of putting together the first Periodiek 

created by the new committee on a deserted university 
campus. I think it is fair to say that I have enjoyed putting 
this magazine together, although it took some effort and 
therefore I would thank the previous committee members 
for their great work. 

When this edition reaches you, it is probably cold outside 
and therefore we’ve provided a recipe for a typical dutch 
winter dish called ‘snert’. When you have cooked your 
very own batch of snert, you can enjoy it while reading the 
articles in this magazine or while making the puzzle in the 
back.  The puzzle has a remarkable feature this time, which 
is that is actually solvable! I am saying this as in last edition, a 
mistake was made and therefore the puzzle was not correct. 

Have fun reading!

-Gerrit van Tilburg

Erratum
In the article “Building a Research Career at ASTRON” in the issue 
2017-2, the two panels in Figure 3 were, unfortunately, swapped. 
The artist impression of the SKA dishes in the same acticle was made 
by Swinburne Astronomy Productions on behalf of the SKA Program 
Development Office.



Google’s AutoML Trumps Human AI Engineers

Google’s new AI project, AutoML, has managed to 
beat the best AI engineers at Google’s disposal, after it 
created a more efficient and advanced machine learning 
software, just six months after its announcement.

The project focuses on deep learning: higher level of 
machine learning that is dedicated to mimicking 
human learning capabilities, and intends to democratise 
the field of artificial intelligence by supplementing the 
R&D of the few thousand AI experts in the world. 

AutoML reportedly scored a record 82 percent at 
categorising images by their content, and was even more 
impressive on harder tasks such as marking the location 
of multiple objects in an image, taking the score of  43 
percent versus the human-built system’s 39 percent.

WIRED

If you want to know more about the link between machine 
learning and material science, read the contribution of the 
ZIAM to the from the frontiers of knowlege section in this 
issue (on page 12).

Merger of Two Neutron Stars Observed

Scientists have detected another set of gravitational 
waves; ripples in the fabric of space-time created by 
objects moving throughout the universe.

This is the fifth time that gravitational waves have been 
detected at the LIGO and Virgo observatories.

All  four previous wave detections have come from the 
mergers of black holes, which are events that do not 
emit light.  However, this time around, the waves were 
caused by the merger of two neutron stars: superdense 
leftovers of stars after they have collapsed. The merger 
caused the two objects to spiral around each other 
before smashing into one another. The result was a 
colossal fireball visible to light detecting telescopes at 
ESO, and other observatories around Earth. 

This event  is the first time that astronomers have 
observed both gravitational waves and electromagnetic 
radiation. 

ESO, THE VERGE   
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In the News
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New Leaps in CRISPR Research

CRISPR, the revelutionary gene-editing tool, has been 
the source of hype in the field of genetic and biochemical 
engineering for the past couple of decades. 

The molecular scalpel is capable of altering or even 
deleting whole genes. Now, researchers at MIT and 
Harvard have announced that they have developed 
a more precise version of the DNA-editing tool: base 
editing. 

The human genome contains six billion DNA letters. 
Base editing targets just a single base as it uses a modified 
version of CRISPR that is able to change a single one 
of these letters at a time without making breaks in the 
DNA’s structure. This is a huge leap in removing point 
mutations, which are known to be involved in causing 
diseases. This also allows scientists to simply change a 
specific part, instead of moving a lot of DNA around.

This means that in a perfect world, CRISPR could 
possibly help ‘delete’ every faulty gene in the human 
body, making  diseases and biological mortality  a thing 
of the past.

                                            NATURE, SCIENCE

Extracting Thermal Energy on the Nanoscale

An international team of researchers from various 
institutes including the University of Glasgow and the 
University of Exeter in the UK, as well as from the ETH 
Zurich and the Paul Scherrer Institute in Switzerland,  
have found a new way to transform ambient heat into 
motion in nanoscale devices, a discovery which could 
open up new possibilities for data storage, sensors, 
nanomotors and other applications in the ever-
shrinking world of electronics.

Their paper describes how they have created a magnetic 
system capable of extracting thermal energy on the 
nanoscale, using the concept of a gear known as a 
ratchet. They then turned magnetic energy into the 
directed rotation of the magnetisation.

These findings establish an unexpected route to 
transforming magnetic energy into the directed 
motion of magnetisation. The effect now found in the 
two-dimensional magnetic structures comes with the 
promise that it will be of practical use in nanoscale 
devices, such as magnetic nanomotors, actuators, or 
sensors. 

                                          
                                             
                                            NATURE MATERIALS
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author: leander van beek

From the Board

A long time ago - 57 years, 11 months and 25 days, to 
be exact - something special happened. The moment 
was right, the stars were aligned in the right way, it 
was one in a million... That was the day that the FMF, 
the “Fysisch-Mathematische Faculteitsvereniging” was 
founded. Of course, a lot has changed since those days. 
Not just within our association, but also in the rest 
of the world. New technologies like the internet were 
developed, world conflicts were solved, celebrities were 
born, we reached the first celestial objects different from 
the earth and new fundamental physical concepts like 
string theory were discovered. Now I do not wish to 
compare these revolutions to the revolution that went 
around the FMF recently, but I can of course humbly 
tell you what happened.

The start of the academic year is always a time of 
change. New freshmen arrive from all over the world, 
new plans and resolutions for this year are made, and 
the transition between boards is completed during the 
transition GMA in September. This year, it was time for 
the 58th board of the FMF to be discharged and time 
for the 59th board to take over. The transition ceremony 
during the GMA went pretty smoothly: thoughtful gifts 
were exchanged, beautiful board songs were sung and 
enlightening speeches on compactification were heard.

And then, our adventure took off. Literally. Imagine 
yourself barely awake, after the two hours of sleep that 

Leander van Beek is the new chairman of the FMF. In this article, he 
tells about his experiences in the first board months.

were had due the the celebration that was had after 
the GMA until many bars closed their doors. The 
bad longing for coffee is taking the better of you and 
by tradition, you do not know what you can expect 
when you open the NSFW for the first time in your 
official board year. You arrive at the faculty, early in the 
morning (Bestuuur! Why are we out of coffee!?) and open 
up the room. You smell... A forest. The sounds of birds 
are echoing throughout the room. You blink thrice to 
check if you’re really seeing this - you are. The room 
has been completely rebuilt into a jungle. And you start 
wondering - does the previous board know what this 
room is? Is it a bar? Is it a jungle? Is it a study room? But, 
I digress. We take place in our regular seats, covered by 
branches and leaves. We know this is it; this marks the 
beginning of our official board year. And, although 
tired, we start cleaning up the NSFW while the first 
members arrive, congratulating us. This is it - our reign 
of the FMF has begun.

Now that two months are over, most of the new-
academic-year-rush is behind us and we start to have 
some understanding of how to actually manage the 
association. Everyone is getting used to their position 
and although the rest of the year will probably be busy 
as well, this is when we can start incorporating our own 
ideas to make the association flourish like it never has•

FIGURE 2: The FMF´s very own Nobbie in his natural 
habitat: a messy NSFW
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FIGURE 1: Is it a bar? Is it a jungle?
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author: daniel valesin

The Coupon Collector’s Problem

This is called the coupon collector’s  problem and 
is a classical problem in Probability Theory. It 
appears in A. de Moivre’s first book on Proba-

bility, “De Mensura Sortis’’ or ‘‘On the Measurement of 
Chance’’, from 1708.

Let Tn be the number of coupons we buy until we 
complete the collection. This is a random variable, so 
we can of course not predict its value with certainty. 
However, can we say anything intelligent about it? For 
instance: certainly Tn is at least n, but would you expect 
that, when n is large, Tn is typically closer to n2 or to 2n?

We will become more informed by computing E(Tn),

the expected value of Tn. To do so, let us define some 
auxiliary random variables. Let tn,0 = 0 and, for 
m = 1, ..., n, let tn,m be the total number of coupons 
we have bought until our collection has accumulated 
m different types. For instance, suppose n = 5 and we 
represent the five different types by the numbers 1, 2, 
3, 4, 5. Assume that the types of the coupons we buy 
come in the following order: 

We then have t5,1 = 1, t5,2 = 2, t5,3 = 4, t5,4 = 5, 
and t5,5 = 11. Note that tn,1 is always one and that  
tn,n = Tn. We can express Tn as the result of a 
telescoping sum:

Each term of the form tn,m+1 − tn,m represents the 
amount of coupons we had to buy to make our 
collection go from having m distinct types to having 
m + 1 distinct types. Think of it this way: after time 

tn,m, each new coupon we buy is an attempt (or trial) 
to obtain a type distinct from the m types we already 
have; the trials are independent and the probability of 
success of each of them is n−m

n
. Then, tn,m+1 − tn,m 

is the number of trials needed until we have a success. 
In the language of Probability Theory, this means that 
tn,m+1 − tn,m follows a geometric distribution with 
parameter n−m

n
,

The expectation of a Geometric(p) random variable 
is 1/p (if the probability of winning the lottery is 10-8, 
then the expected number of times we have to play until 
winning is 108). We thus obtain

where Hn = 1 +
1

2
+

1

3
+ · · ·

1

n
 is the sum of the 

first n terms of the harmonic series. As you may know, 
Hn is quite close to the natural logarithm of n, log(n)
In fact,

where γ  is called the Euler-Mascheroni constant, 
γ  = 0.5772....
We have thus shown that on average, to complete 
a collection of n distinct types of coupons, we have 
to buy about n . Hn  ≈ n log(n) coupons, which is 

A coupon collection consists of n types of coupons. Coupons are sold in sealed 
envelopes; each envelope contains a single coupon, which is equally likely to be 
of any of the n types. Every day we buy an envelope, until we have at least one 
coupon of each type, thus completing the collection. How long does it take for 
this to happen?

1, 2, 1, 5, 3, 2, 2, 5, 3, 1, 4. (1)

tn,m+1 − tn,m ∼ Geometric(n−m

n
).

Tn = tn,n = (tn,n − tn,n−1) + (tn,n−1 − tn,n−2)

+ (tn,n−2 − tn,n−3) + · · ·+ (tn,1 − tn,0).

E(Tn) = E(tn,n − tn,n−1) + E(tn,n−1 − tn,n−2)

+ · · ·+ E(tn,1 − tn,0)

=
1

n−(n−1)

n

+
1

n−(n−2)

n

+
1

n−(n−3)

n

+ · · ·+
1

n−0

n

= n ·Hn,

lim
n→∞

(Hn − log(n)) = γ,

From the Frontiers oF Knowledge
Researchers from the various institutes affiliated with the RUG in the fields of physics, mathematics, astronomy, 

computing science, and artificial intelligence report on the cutting-edge science that is conducted there. JBI
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surprisingly little, just a logarithmic factor above the 
minimal required amount, n.

The next natural question to ask is: how well does this 
expected value reflect the behavior of Tn? We will now 
argue that if k is a large number, then Tn is very likely to 
be less than n log(n) + k · n . This means that, after we 
have bought n log(n) coupons, if the collection is not 
yet complete, then we can be quite confident that it will 
be complete once we buy the (comparatively smaller) 
additional quantity of k · n coupons.   

In order to give the argument, we will need some more 
auxiliary random variables. For each coupon type 
i = 1, ... , n, we let 

number of coupons we buy until
the first coupon of type i shows up.

For example, in (1) we have τ5,1 = 1, τ5,2 = 2, 
τ5,3 = 5, τ5,4 = 4, τ5,5 = 11. Note that Tn is the 
largest among the values τn,1, . . . , τn,n, that is,

(2)

You can convince yourself that

(3)

For a fixed type i, what is the probability that 
τn,i > n log(n) + k · n, that is, that it takes more 
than n log(n) + k . n  purchases until we get a type-i 
coupon? For this to happen, every purchase we make, 
from the first to the n log(n) + k · n, has to be of a 
type different from i; this has probability

where we have used the inequality 1− x ≤ e
−x. 

We then estimate as follows (using the inequality 
P(A ∪B) ≤ P(A) + P(B)):

which is very small if k is large.

Another way to express what we have just proved is: the 
fluctuation Tn - E(Tn), = Tn - n · Hn  has order of 
magnitude at most n (at least when it is positive). In [1], 
the Hungarian mathematicians Paul Erdős and Alfréd 
Rényi proved something much more refined. Namely, 
they proved that we can write

where 

where Hn = 1 + 1
2 + 1

3 + · · · 1
n is the sum of the first n terms of the harmonic series. As

you may know, Hn is quite close to the natural logarithm of n, log(n). In fact,

lim
n→∞

(Hn − log(n)) = γ,

where γ is called the Euler-Mascheroni constant, γ = 0.5772....
We have thus shown that on average, to complete a collection of n distinct types of

coupons, we have to buy about n ·Hn ≈ n log(n) coupons, which is surprisingly little, just
a logarithmic factor above the minimal required amount, n.

The next natural question to ask is: how well does this expected value reflect the
behavior of Tn? We will now argue that if k is a large number, then Tn is very likely to
be less than n log(n) + k · n. This means that, after we have bought n log(n) coupons, if
the collection is not yet complete, then we can be quite confident that it will be complete
once we buy the (comparatively smaller) additional quantity of k · n coupons.

In order to give the argument, we will need some more auxiliary random variables. For
each coupon type i = 1, . . . , n, we let

τn,i =
number of coupons we buy until

the first coupon of type i shows up.

For example, in (1) we have τ5,1 = 1, τ5,2 = 2, τ5,3 = 5, τ5,4 = 4, τ5,5 = 11. Note that Tn

is the largest among the values τn,1, . . . , τn,n, that is,

Tn = max
1≤i≤n

τn,i. (2)

You can convince yourself that

τn,i ∼ Geometric
(

1
n

)

, i = 1, . . . , n. (3)

For a fixed type i, what is the probability that τn,i > n log(n) + k · n, that is, that
it takes more than n log(n) + k · n purchases until we get a type-i coupon? For this to
happen, every purchase we make, from the first to the n log(n) + k · n, has to be of a type
different from i; this has probability

(

1− 1

n

)n log(n)+k·n
≤ e−

1
n
(n logn+k·n) = n−1 · e−k,

where we have used the inequality 1 − x ≤ e−x. We then estimate as follows (using the
inequality P(A ∪B) ≤ P(A) + P(B)):

P(Tn > n log(n) + k · n) = P
(

max
1≤i≤n

τn,i > n logn+ k · n
)

= P ({τn,1 > n logn+ k · n} ∪ {τn,2 > n logn+ k · n} ∪ · · · ∪ {τn,n > n logn+ k · n})

≤
n
∑

i=1

P (τn,i > n logn+ k · n) ≤ n · n−1 · e−k = e−k,

which is very small if k is large.
Another way to express what we have just proved is: the fluctuation Tn − E(Tn) =

Tn−n ·Hn has order of magnitude at most n (at least when it is positive). In [ER61], the
Hungarian mathematicians Paul Erdős and Alfréd Rényi proved something much more
refined. Namely, they proved that we can write

Tn = n ·Hn + n · En, that is,
Tn

n
= Hn + En,

2

 is a random variable whose distribution 
converges to something as n tends to infinity.1

What is this limiting distribution? It is called the 
(standard) Gumbel distribution and has the funny-
looking probability distribution function

Saying that 

where Hn = 1 + 1
2 + 1

3 + · · · 1
n is the sum of the first n terms of the harmonic series. As

you may know, Hn is quite close to the natural logarithm of n, log(n). In fact,

lim
n→∞

(Hn − log(n)) = γ,

where γ is called the Euler-Mascheroni constant, γ = 0.5772....
We have thus shown that on average, to complete a collection of n distinct types of

coupons, we have to buy about n ·Hn ≈ n log(n) coupons, which is surprisingly little, just
a logarithmic factor above the minimal required amount, n.

The next natural question to ask is: how well does this expected value reflect the
behavior of Tn? We will now argue that if k is a large number, then Tn is very likely to
be less than n log(n) + k · n. This means that, after we have bought n log(n) coupons, if
the collection is not yet complete, then we can be quite confident that it will be complete
once we buy the (comparatively smaller) additional quantity of k · n coupons.

In order to give the argument, we will need some more auxiliary random variables. For
each coupon type i = 1, . . . , n, we let

τn,i =
number of coupons we buy until

the first coupon of type i shows up.

For example, in (1) we have τ5,1 = 1, τ5,2 = 2, τ5,3 = 5, τ5,4 = 4, τ5,5 = 11. Note that Tn

is the largest among the values τn,1, . . . , τn,n, that is,

Tn = max
1≤i≤n

τn,i. (2)

You can convince yourself that

τn,i ∼ Geometric
(

1
n

)

, i = 1, . . . , n. (3)

For a fixed type i, what is the probability that τn,i > n log(n) + k · n, that is, that
it takes more than n log(n) + k · n purchases until we get a type-i coupon? For this to
happen, every purchase we make, from the first to the n log(n) + k · n, has to be of a type
different from i; this has probability

(

1− 1

n

)n log(n)+k·n
≤ e−

1
n
(n logn+k·n) = n−1 · e−k,

where we have used the inequality 1 − x ≤ e−x. We then estimate as follows (using the
inequality P(A ∪B) ≤ P(A) + P(B)):

P(Tn > n log(n) + k · n) = P
(

max
1≤i≤n

τn,i > n logn+ k · n
)

= P ({τn,1 > n logn+ k · n} ∪ {τn,2 > n logn+ k · n} ∪ · · · ∪ {τn,n > n logn+ k · n})

≤
n
∑

i=1

P (τn,i > n logn+ k · n) ≤ n · n−1 · e−k = e−k,

which is very small if k is large.
Another way to express what we have just proved is: the fluctuation Tn − E(Tn) =

Tn−n ·Hn has order of magnitude at most n (at least when it is positive). In [ER61], the
Hungarian mathematicians Paul Erdős and Alfréd Rényi proved something much more
refined. Namely, they proved that we can write

Tn = n ·Hn + n · En, that is,
Tn

n
= Hn + En,

2

 converges in distribution to this means 
that, for any x,

which is the statement you will find in Erdős and 
Rényi’s paper.

We will now leave aside coupon collecting for a moment 
to say a few words about the Gumbel distribution. This 
is an important distribution in Extreme Value Theory. 
In a nutshell, EVA is the study of the occurrence of 
abnormal outcomes when a certain natural observable 
is being measured repeatedly. If the previous sentence 
tells you little, consider the following example: every 
day we measure the level of a river; we are interested in 
describing the frequency with which we should expect 
the river to rise so much as to produce a flood. 

Here is a quick toy model to illustrate how the Gumbel 
distribution arises. Let X1, X2, . . .  be independent 
random variables representing measurements of 
something along time (in the example given above, the 
Xi’s would represent the daily measurements of the level 
of the river). Assume the Xi’s follow the exponential 
distribution with parameter 1, that is, they have the 
distribution function

1 If you are familiar with the Central Limit Theorem, this is a 
similar type of result as that: the “normalised’’ random variable Tn−E(Tn)

n
 

has a distributional limit. However, unlike the CLT, here the limit is not 
Gaussian.

τn,i =

Tn = max
1≤i≤n

τn,i.

τn,i ∼ Geometric
(

1

n

)

, i = 1, . . . , n.

(

1−
1

n

)

n log(n)+k·n

≤ e
−

1

n
(n logn+k·n)

= n
−1

· e
−k
,

P(Tn > n log(n) + k · n)

= P

(

max
1≤i≤n

τn,i > n log n+ k · n

)

= P ({τn,1 > n log n+ k · n} ∪ {τn,2 > n log n+ k · n}

∪ · · · ∪ {τn,n > n log n+ k · n})

≤

n
∑

i=1

P (τn,i > n log n+ k · n) ≤ n · n−1
· e−k = e−k,

where Hn = 1 + 1
2 + 1

3 + · · · 1
n is the sum of the first n terms of the harmonic series. As

you may know, Hn is quite close to the natural logarithm of n, log(n). In fact,

lim
n→∞

(Hn − log(n)) = γ,

where γ is called the Euler-Mascheroni constant, γ = 0.5772....
We have thus shown that on average, to complete a collection of n distinct types of

coupons, we have to buy about n ·Hn ≈ n log(n) coupons, which is surprisingly little, just
a logarithmic factor above the minimal required amount, n.

The next natural question to ask is: how well does this expected value reflect the
behavior of Tn? We will now argue that if k is a large number, then Tn is very likely to
be less than n log(n) + k · n. This means that, after we have bought n log(n) coupons, if
the collection is not yet complete, then we can be quite confident that it will be complete
once we buy the (comparatively smaller) additional quantity of k · n coupons.

In order to give the argument, we will need some more auxiliary random variables. For
each coupon type i = 1, . . . , n, we let

τn,i =
number of coupons we buy until

the first coupon of type i shows up.

For example, in (1) we have τ5,1 = 1, τ5,2 = 2, τ5,3 = 5, τ5,4 = 4, τ5,5 = 11. Note that Tn

is the largest among the values τn,1, . . . , τn,n, that is,

Tn = max
1≤i≤n

τn,i. (2)

You can convince yourself that

τn,i ∼ Geometric
(

1
n

)

, i = 1, . . . , n. (3)

For a fixed type i, what is the probability that τn,i > n log(n) + k · n, that is, that
it takes more than n log(n) + k · n purchases until we get a type-i coupon? For this to
happen, every purchase we make, from the first to the n log(n) + k · n, has to be of a type
different from i; this has probability

(

1− 1

n

)n log(n)+k·n
≤ e−

1
n
(n logn+k·n) = n−1 · e−k,

where we have used the inequality 1 − x ≤ e−x. We then estimate as follows (using the
inequality P(A ∪B) ≤ P(A) + P(B)):

P(Tn > n log(n) + k · n) = P
(

max
1≤i≤n

τn,i > n logn+ k · n
)

= P ({τn,1 > n logn+ k · n} ∪ {τn,2 > n logn+ k · n} ∪ · · · ∪ {τn,n > n logn+ k · n})

≤
n
∑

i=1

P (τn,i > n logn+ k · n) ≤ n · n−1 · e−k = e−k,

which is very small if k is large.
Another way to express what we have just proved is: the fluctuation Tn − E(Tn) =

Tn−n ·Hn has order of magnitude at most n (at least when it is positive). In [ER61], the
Hungarian mathematicians Paul Erdős and Alfréd Rényi proved something much more
refined. Namely, they proved that we can write

Tn = n ·Hn + n · En, that is,
Tn

n
= Hn + En,

2

FGumbel(x) = e
−e

−x

, x ∈ R.

where En is a random variable whose distribution converges to something as n tends to
infinity.1

What is this limiting distribution? It is called the (standard) Gumbel distribution
and has the funny-looking probability distribution function

FGumbel(x) = e−e−x
, x ∈ R.

Saying that En converges in distribution to this means that, for any x,

P (Tn ≤ n ·Hn + n · x) = P(En ≤ x)
n→∞−−−→ FGumbel(x),

which is the statement you will find in Erdős and Rényi’s paper.
We will now leave aside coupon collecting for a moment to say a few words about the

Gumbel distribution. This is an important distribution in Extreme Value Theory. In a
nutshell, EVA is the study of the occurrence of abnormal outcomes when a certain natural
observable is being measured repeatedly. If the previous sentence tells you little, consider
the following example: every day we measure the level of a river; we are interested in
describing the frequency with which we should expect the river to rise so much as to
produce a flood.

Here is a quick toy model to illustrate how the Gumbel distribution arises. Let
X1, X2, . . . be independent random variables representing measurements of something
along time (in the example given above, the Xi’s would represent the daily measure-
ments of the level of the river). Assume the Xi’s follow the exponential distribution
with parameter 1, that is, they have the distribution function

FExp(1)(x) = 1− e−x, x ≥ 0.

Then, consider the random variable

Yn = max
1≤i≤n

Xi, (4)

that is, Yn is equal to the largest among the values X1, . . . , Xn (so that in a way, Yn
corresponds to the most “extreme event”). The probability distribution function of Yn −
log(n) is given by

P(Yn − log(n) ≤ x) = P(X1, . . . , Xn ≤ log(n) + x) = P(X1 ≤ log(n) + x)n

= [FExp(1) (log(n) + x)]n

=
[

1− e−(log(n)+x)
]n

=

(

1− e−x

n

)n
n→∞−−−→ e−e−x

= FGumbel(x),

where we have used the well-known limit lim
n→∞

(1 + a
n)

n = ea. That is, Yn−log(n) converges

to the Gumbel distribution.
Coming back to the coupon collector’s problem, we will now give an heuristic expla-

nation to the appearance of Gumbel-distributed fluctuations. The question is: what does
collecting coupons have to do with Extreme Value Theory? The connection will come
from relating equation (4) to equation (2) divided by n,

Tn

n
= max

1≤i≤n

τn,i
n

.

1If you are familiar with the Central Limit Theorem, this is a similar type of result as that: the
“normalized” random variable Tn−E(Tn)

n
has a distributional limit. However, unlike the CLT, here the

limit is not Gaussian.
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FExp(1)(x) = 1− e
−x
, x ≥ 0.
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will now give a heuristic explanation to the appearance 
of Gumbel-distributed fluctuations. The question is: 
what does collecting coupons have to do with Extreme 
Value Theory? The connection will come from relating 
equation (4) to equation (2) divided by n,

That is, we want to establish a similarity between Yn 
(= the maximum among n exponentially distributed 
random variables), and Tn

n
 (= the waiting time to 

complete a collection of n coupons, divided by n). 
To this end, we must establish a similarity between 
X1, ..., Xn and 

(

τn,1

n
, . . . ,

τn,n

n

)

.

Two problems arise. Problem 1: the distribution 
of the Xi’s is not the same as the distribution of the 
τn,i

n

’s. However, we now claim that, due to (3), these 
two distributions are similar when n is large. Indeed, 
it is a simple exercise to show that, if we take a 
Geometric(1

n
) random variable and divide it by 

n, then the resulting random variable is close to 
Exponential(1).2

Problem 2: the Xi’s are independent, while the τn,i

n

’s 

2 Intuitively, this approximately (when n → ∞) describes an 
Exponential(1) random variable as the time it takes to obtain the first 
success if we perform trials such that each trial (a.) has success probability 
1

n
, and (b.) only takes 1

n
 units of time. There is a double limit here: success 

is becoming increasingly rare, but things are also happening increasingly 
fast.

are not. To see that the τn,i

n

’s are not independent, 
consider the case in which there are only two types, 
n = 2: if we are informed that τ2,1 = 2 , that is, 
that type 1 appeared for the first time as the second 
purchased coupon, we are then forced to conclude that 
τ2,2 = 1. You will probably agree that this becomes less 
of an issue when n is large: then, the value of any one of 
the τn,i’s will give us much less information about the 
others. Actually proving that this heuristic “asymptotic 
independence’’ implies a convergence to the Gumbel 
distribution is technically challenging.

As you can imagine, this is not where the story ends. 
Already in [1], the authors considered a variant of the 
problem where we are not only required to complete a 
collection, but rather, to accumulate at least r coupons 
of each type, where r is some positive integer. Other 
variants of the problem (including the situation in which 
the types are not equally likely to appear) and interesting 
connections to other well-known probabilistic problems 
were studied in [2]. There are numerous other works on 
the coupon collector problem.

A direction of research that I find especially interesting 
is the generalisation of these ideas to Markov chains and 
random walks (see for instance [3], [4], and [5]). Let 
me finish with a flavor of the type of result that can be 
achieved. Suppose we have a deck of N cards, which 
we sequentially shuffle (imagine a simple shuffling rule, 
such as: in each step, exchange the positions of two 
randomly chosen cards). We proceed until all the N ! 
possible orderings of the cards have appeared at least 
once. In [3] it is proved that the number of shuffles we 
need is 
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A direction of research that I find especially interesting is the generalization of these
ideas to Markov chains and random walks (see for instance [Mat88], [Ald83] and [Bel13]).
Let me finish with a flavor of the type of result that can be achieved. Suppose we have a
deck of N cards, which we sequentially shuffle (imagine a simple shuffling rule, such as: in
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Materials That Can Learn

AlphaGo
In 2016, a supercomputer called AlphaGo won a match 
of the board game Go (which is considered to be the 
most complicated board game of human origin) against 
the best player in the world, Lee Sedal. In this game 
the number of possibilities is so large that a brute force 
method, in which all the possibilities are computed (this 
is how Gary Kasparov was beaten in a game of chess 
in 1996), would be unfeasible. To be able to play the 
game, AlphaGo made use of deep learning algorithms 
and was trained in advance. 

Machine learning algorithms emulate in some aspects 
the way the human brain processes information. This 
is found to be very useful not only for playing board 
games, but also in other areas such as recognition of 
speech, handwriting, number plates or image contents, 
translation of text and fast-approaching future 
applications such as self-driving cars and autonomous 
robotics.

However, when comparing both contestants, the match 
of Go does seem a bit unfair: while Lee Sedal’s brain 

The Faculty of Science and Engineering is about to inaugurate the Groningen Center for 
Cognitive Systems and Materials (CogniGron), whose goal is to unite the existing expertise 
in Materials Science, Physics, Computer Science, Artificial Intelligence and Mathematics 
to develop a cognitive computer that is able to deal with the huge amounts of useful 
data that we generate. This has to be a computer that can recognise patterns and classify 
heterogeneous data without requiring the power of a supercomputer, as we do now. In 
order to achieve this, it is crucial that we are able to incorporate ‘materials that can learn’ 
into the computer’s hardware.

uses only about 20W of power, AlphaGo is estimated 
to require 1MW to operate: 50.000 times more power! 
Note, that this was only to play Go.  They would never 
put a 1MW computer in every self-driving car! So, how 
is it possible that our brain can perform so well at only 
20W?

The brain
Let’s first look at the main components of the brain: 
the neurons, which are connected to each other by 
synapses. The human brain has approximately 1011 
neurons and every neuron is typically connected to 
some 5000-10000 other neurons (so there are about 
1015 synapses). Information is carried in the form of 
electrical pulses (or spikes) that are transported through 
the synapses. Even though this happens by means of 
complex electrochemical processes mediated by ions 
and large molecules (so-called neurotransmitters) and, 
therefore not the subject of this contribution, one can 
simply consider that each synapse provides a certain 
resistance to the transfer of signals between two neurons. 
The relative resistances (or weights) of all the synapses 

FIGURE 1: Sketch of two biological neurons (Image: khanacademy.org)

From the Frontiers oF Knowledge
Researchers from the various institutes affiliated with the RUG in the fields of physics, mathematics, astronomy, 

computing science, and artificial intelligence report on the cutting-edge science that is conducted there. ZIAM
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the brain, in contrast with computers which can only 
perform one computational task at a time. Together with 
the interconnectivity, this allows for very fast pattern 
recognition in large amounts of messy, disorganised 
or heterogeneous data (all your sensory input: sight, 
hearing, smell etc.). This capability has served as an 
inspiration for the developments in machine learning.

We are now ready to answer the question of why our 
brain is so much more power-efficient than a computer. 
The spiking nature of the electrical signals in the brain 
is already an energy-saving mechanism, compared 
to those in our computers. Also, unlike transistors, 
synapses do not require power to keep the same value of 
resistance when they are not being used. But, the most 
efficient is that in this network of neurons and synapses, 
processing and memory are located in the same area: 
the synapse contains the information and the neurons 
make the computations. This is very different from our 
computer’s architecture. 

in the neural network determine the paths along which 
the information is transferred.  

The neuron integrates all the signals it receives from 
the other neurons it is connected with. When its own 
potential reaches a certain threshold, it will produce a 
spike of its own. The synaptic weight can be adjusted 
by the activity of the two neurons on either side 
of the synapse. If the pre-neuron fires a spike right 
before the post-neuron does, it might be that there is 
a causal relation between the two events and as a result 
the synaptic weight increases (resistance decreases) so 
that more signal is transferred through that particular 
channel next time. In contrast, if the reversed order 
occurs the resistance increases. This behavior is captured 
in Figure 2 and is called Spike-Timing Dependent 
Plasticity (STDP). When synapses change their 
resistance, making certain paths easier for the signal to 
pass along, is when the brain is actually learning.
 
Even though the signals in our brain are quite slow (10-3 

s) compared to those in the computers CPUs (10-9 s), 
the brain performs many calculations in parallel all over 

FIGURE 2: Biological synapse and spikes (above) [3]; 
characteristic STDP behaviour of synaptic weight (below) [5]

FIGURE 3: Conventional computer architecture (above) and 
parallel, more brain-like architecture (below) [2]



Hardware
Currently, machine learning is performed 
on computers based on transistors, just as in 
AlphaGo. In such a computer, the two key 
components are the processor (CPU) and 
the memory. The processor performs the 
computations while it takes and stores the 
information from/in the memory. In this process 
currents flow through wires in between the two 
components, which leads to power dissipation 
(see Figure 3) and is why your computer needs 
cooling. Also, the building blocks, transistors, of 
the processor constantly require power to operate 
and are designed more for speed and reliability 
than for energy efficiency. To improve on this, 
we need to look for different architectures and 
devices and the brain seems to be a pretty good 
model for this. 
 
To make hardware that mimics the operation of 
the biological brain, we should look for analogs 
of the neuron and the synapse. A neuron-like 
device can be built out of a few transistors (which 
is okay for now). Mimicking a synapse, however, 
is more difficult: it requires many transistors and, 

therefore, a lot of power. 
Instead of using transistors, one could use so-called 
memristors to mimic a synapse. A memristor is a device 
in which the resistance depends on the history of the 
voltage applied to it. In addition, when the device is 
turned off, the resistance doesn’t change and will be the 
same the next time the device is used (non-volatility). 
Some types of memristors can have a resistance that 
is not limited to either 0 (high resistance) or 1 (low 
resistance) but are able to vary between multiple values 
in between. This property could allow for STDP, where 
this resistance should change as a result of the signals 
of two adjacent neurons. Every time the conditions are 
met, the resistance should change a little bit.  To build 
a synapse, only a single memristor would be required! 

In recent years, research on materials with memristive 
properties has gained much interest due to these 
promises of energy efficient non-volatile memory and 
neuromorphic applications. One example of such 
a system is shown in Figure 5 where an insulating 
ferroelectric layer of crystalline BiFeO3 is implemented. 
A ferroelectric material has an electric polarisation that 
can be switched, for example by applying a strong 
enough electric field. This layer is placed on a conducting 

FIGURE 4: Ferroelectric polarisation in relation with 
tunneling [4]

FIGURE 5: Ferroelectric synaptic device (above) and its 
STDP behaviour (below) [3]
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FIGURE 6: Crossbar array with input neurons (top), output 
neurons (right) and synapses (at the intersections). Every 
input neuron is connected to 5 output neurons [2]



substrate and on top metallic contacts are placed. At 
the interface of the insulating BiFeO3 and the metallic 
contacts, the electronic bands bend due to the internal 
field created by the ferroelectric layer (see Figure 4). 
How and how strong these bands are bent depends on 
the magnitude and direction of the polarisation in the 
ferroelectric material. For a very thin layer of BiFeO3, 
tunneling conduction can occur through the insulating 
barrier. The rate of tunneling depends on the bending 
of the bands and therefore on the direction of the 
polarisation. Switching the ferroelectric material, thus, 
changes the resistance of the device. 

In reality the film is not perfectly homogeneous. 
Therefore, the ferroelectric does not switch everywhere 
at the same electric field strength and one can use this 
to manipulate the change in resistance: a multi-value 
memristor is born. In Figure 5 the result of an STDP 
experiment of such a device is shown. Here the same 
behavior is observed as in a biological synapse.

One can design cross-bar arrays of these devices as in 
Figure 6. The lines resemble the dendrites and axons 
of the neurons, while the synapses are at the nodes 
connecting them. Such networks can then be trained for 
learning in a similar way as neural network algorithms 
are trained.  

Utilising as-grown networks
This was only one example; there are many approaches 
out there, utilising magnetism, spintronics, electro-
chemistry, phase change materials and many more 
– ideas are popping up everywhere. But the brain has 
even more to offer. Industry tries to make everything 
ordered and well-controlled, as in the cross-bar arrays. 
However, reaching the 1015 synapses in a reasonable 

volume seems unattainable with current top-down 
processing techniques. In addition, our brain is more 
like a spaghetti of neurons. Apparently a more chaotic 
arrangement of devices can also work fine, or maybe even 
better. In our lab in the Nanostructures of Functional 
Oxides group we investigate the idea of using dense, 
self-organised networks of such materials instead (see 
Figure 8). The hope is that this will allow for the study 
of dynamical behavior of networks of larger amounts 
of nodes and perform a statistically relevant analysis 
that can determine if or under which conditions the 
different types of memristive materials can learn•
      
References

[1] D. Silver et al., Mastering the game of Go with deep 
neural networks and tree search, Nature (2016)

[2] Z. Zhang et al., A FPGA-based, granularity-variable 
neuromorphic processor and its application in a MIMO 
real-time control system, Sensors (2017)

[3] S. Boyn et al., Learning through ferroelectric 
domain dynamics in solid-state synapses, Nature 
Communications (2017)

[4] V. Garcia et al., Ferroelectric tunnel junctions 
for information storage and processing, Nature 
Communications (2014)

[5] Y. Dan et al., Spike timing-dependent plasticity: 
from synapse to perception, Physiological Reviews (2006)

[6] URL: http://www.ceva-dsp.com/ourblog/ artificial-
intelligence-leaps-forward-mastering-the-ancient-
game-of-go/

Periodiek | 2017-3 | 15

FIGURE 7: SEM image of a self-organised network of 
an oxide using polymer templating (courtesy of J. Xu, 
Macromolecular Chemistry and New Polymeric Materials 
group)

FIGURE 8: Conductive AFM image of self-organised 
conducting domain wall network in ferroelectric BiFeO3 (own 
work, Nanostructures of Functional Oxides group)
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Everyone knows that the answer to the ultimate question of life, the 
universe and everything is 42 [1]. But can we really reduce the origin 
of the universe to such a random number? The real answer lies above 
our heads and underneath our feet, in the stars and in the earth, in 
the elements that make up everything. FAIR, an upcoming large-scale 
accelerator facility for heavy ions, will give scientists from all over the 
world an opportunity to solve the giant puzzle of the origin of the 
universe, one little piece at a time. 

A Mechanical Design to Unearth 
the Origin of the Universe

From the Frontiers oF Knowledge
Researchers from the various institutes affiliated with the RUG in the fields of physics, mathematics, astronomy, 

computing science, and artificial intelligence report on the cutting-edge science that is conducted there.

KVI-
CART

authors: dr. c.rigollet, ing. m.f. lindemulder, ing. h.a.j. smit, prof. dr. n. kalantar-nayestanaki

FAIR is the successor of GSI Helmholtzzentrum für 
Schwerionenforschung in Darmstadt, Germany, 
and will provide beams of antiprotons and very 

exotic ions to discover unknown states of matter and 
study the evolution of the universe. The production 
and guiding of the particles to the experimental areas 

are complex and require many disciplines working in 
synergy to achieve this technical feat. Like most things 
in life, the realisation of an idea or a concept starts 
with a design, and in the case of the Super FRagment 
Separator (Super-FRS) at FAIR, a mechanical design. 

FIGURE 3: Top plate of the plug showing the possible lateral movements in East-West and North-South directions, 
resulting in a tilt of the plug
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KVI-CART, in close collaboration with GSI, is heavily 
involved in the design and manufacturing of some 
critical elements of the Super-FRS, where secondary 
exotic beams are created, selected and directed to 
different nuclear and atomic physics experiments. 
The target station is the most significant and intricate 
part of the Super-FRS, as it is the place where the 
radioactive species are born. The target, on which the 
primary ions impinge, is a rotating wheel made out 
of graphite and is housed in a large vacuum chamber, 
along with several beam diagnostic components. The 
tremendous amount of radiation generated at the target 
needs to be absorbed in shielding material to reduce the 
activation on the upper side of the chamber and allow 
human intervention. Therefore, every element in the 
target station is connected to the bottom of a so-called 
shielding plug, which can be inserted or removed from 
the vacuum chamber remotely.   

The mechanical design of the vacuum chamber must 
fulfill strict conditions regarding dimensions and 
tolerances as it has to be integrated into the surrounding 
iron radiation shielding of the Super-FRS. For instance, 
the bending of the chamber under its weight or by air 
pressure must not alter its function or shift the plugs by 
more than 0.2 mm with respect to the aligned positions. 
The chamber has five inserts and the devices mounted 
on the plugs have vertical drives to move and remove 
the various beam diagnostic detectors, the target wheel, 
target ladder and collimator from the beam axis. Figure 
1 shows a cross section of the target chamber with the 
plugs inserted.

The height of the plugs is 2200 mm, which includes 
at least 1500 mm of iron shielding to satisfy radiation 
protection guidelines. Situated in the high radiation 
area of the Super-FRS, the target station components 
need to be handled remotely with a robot. This implies 
lifting the plugs and transporting them to a hot cell, 
where parts can be replaced or exchanged. The plugs 
can then be reinserted in the chamber. Weighing at 
more than 4000 kg, the accuracy of the positioning 
and guiding of the plugs during insertion is a crucial 
part for remote handling. Therefore, a real-size dummy 
plug was manufactured and a test setup mimicking the 
vacuum chamber erected to verify the guiding structure 
of the plug into the chamber and determine the limits 
of displacement and tilting of the plug with respect to 
the vertical still allowing a safe insertion. 

The dummy plug is made out of blocks of stainless 
steel stacked one millimeter apart to avoid having air 
trapped in the chamber and achieve a better vacuum. 
The structural integrity of the plug is realised by the 

FIGURE 1: Cross-section of the target station.



addition of four rods passing through the whole 
length of the dummy. Four legs with tapered ends are 
connected to the bottom block and provide the guiding 
system into an insert of the chamber. 

A frame of UNP steel profiles was manufactured to 
simulate the shape of an insert, with plates of stainless 
steel connected to the inside of the assembly to ensure 
a smooth gliding of the plug into the enclosure and 
reproduce the real-life situation in the target chamber. 
A normal crane hook was used to lift and lower the plug 
into the U-frame. The setup is shown in figure 2. The first 
step in testing the proper functioning of such large and 
heavy contraption is to assess the reproducibility of the 
movement in and out of the structure. Measurements of 
the space between the legs and the structure are taken 
on  the four sides at two corners each time the plug is 
lowered. The largest deviation observed is 50 µm.  After 
a series of lifting and lowering the plug, the blocks are 
visually inspected for damages that could affect the 
functionality of the system.

The limit of lateral displacement is obtained by moving 
the crane. The maximum displacement observed for 
which the plug can still be lowered in the insert is 65 
mm. This value largely exceeds the required one of 20 
mm. The tilt of the plug can be achieved by altering 
the position of the lifting point of the plug,  as can be 
seen on figure 3. Several combinations of displacements 
were tested and the limit was found at 28 mrad, again 
surpassing the requisite value of 5.7 mrad.

The successful plug test is a first step towards the 
construction of the target station and the completion 
of the Super-FRS at FAIR. Without (mechanical) 
engineering, the greatest scientific ideas would stay 
just that, the theories left unverified, the universe still a 
mystery. “We are stardust, we are golden, we are billion 
year old carbon”, and we can prove it•

References

[1] Douglas Adams, The Hitchhiker’s Guide to the 
Galaxy

FIGURE 2: Test setup with plug hanging from a crane hook
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The Muon Problem

Cosmic rays reach the earth’s atmosphere all the 
time, the lower energy particles (~1010 eV) reach 
the earth more than once per second per square 

meter. When considering the muon problem, we are 
mainly interested in the so-called “Ultra High Energy 
Cosmic Rays” (UHECR) which have energies greater 
than 1018 eV (compare this to energies at LHC, where 
particles reach about 1013 eV). These are a lot rarer, they 
reach the earth about once per square kilometer per 
year. The exact origin of these UHECRs is still a topic 
of debate to this day. 

When one of these particles interacts with the 
atmosphere it will produce many more energetic 

Cosmic rays can attain energies up to a million times higher than the 
energies reached at the LHC. When these cosmic rays collide with 
particles in the atmosphere this enormous amount of energy will create 
many new particles. Why and how this happens is understood quite 
well, but our predictions do not match the data. 30-80% more muons 
seem to be created in the air shower following the initial collision with 
the atmosphere than our models predict.

particles which will either decay, or it will collide again 
with a particle in the atmosphere where it will once 
again create a bunch of more particles. These newly 
created particles will undergo the same process. Every 
time a particle collides to create more particles we call 
it a new generation, the entirity of the particles created 
is called the air shower. At some point the energy of the 
particles is so low that more particles are being stopped 
than created, this point is called the shower maximum.

We have very sophisticated models to simulate these 
air showers. And as good as these models are, they all 
fail to correctly predict the number of muons created. 
In 2015 the Pierre Auger Observatory, a 3000 km2 

FIGURE 1: A schematic picture of the Pierre Auger Observatory in Argentina. The red line represents an incoming cosmic ray. 
The white dots and coloured semicircles are different types of observatories.
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large observatory in Argentina, observed 30-80% more 
muons than our models predict (the 30-80% range is 
dependent on what model you compare the data to). 
This is what we call the ‘muon problem’.

Every adjustment you make to your model to resolve 
this muon problem has to have two things: it has to 
increase the amount of muons Nµ (obviously), and it has 
to not change the depth at which the shower maximum 
occurs, Xmax, too much. This last one has proven to 
be quite tricky, simple attempts to resolve the muon 
problem (like decreasing the amount of generations in 
the air shower) fail here. Because the energies involved 
are so high, there is a lot of freedom to come up with 
new physical ideas; the creation of miniature black 
holes, exotic particles or supersymmetric particles have 
all been proposed, but they all fail to predict the right 
Xmax.

Luckily not all theories strike out at this, some theories 
seem to be able to work. Most theories that have as a 
main consequence that less pions will be created will not 
alter Xmax too much, while still being able to influence 
the number of muons that are created.

One of the simpler possible solutions is that particles 
that are created have a higher chance of being in an 
excited state. Another artifically increases the number 
of baryons that are created in the aftermath of the 
collisions. There are also more complex solutions 
based largely on new physics, such as the restoration 
of chiral symmetry at these high energy densities, or a 
percolation of color strings created between the partons 
of interacting particles.

To find out which (if any) of the proposed solutions is 
correct, we look at the way Xmax and Nµ depend on one 
another, as this can greatly differ for any of the proposed 
solutions. To find out what Xmax– Nµ dependency we see 
in nature we will have to wait for more observations. 
For example by Auger Prime, an improvement on the 
Pierre Auger Observatory, expected to run until 2024. 
Auger Prime is expected to deliver a data set twice the 
size of what we currently have with improved accuracy 
for the muonic energy fraction of the air shower•

FIGURE 3: The ρµ — Xmax dependency for 4 different 
proposed models. ρµ here is the muon density and can be 
compared to the Nµ the text.

FIGURE 2: The flux of cosmic rays that reach the earth.
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Brainwork: Symbolic Square

all squares in this column 
are FALSE. There is at 
least 1 TRUE corner 

square.

The square directly to 
the right has a τ or π 

symbol. The bottom row 
has more squares with  
κ symbols than squares 

with λ symbols.

The difference between 
the total number of π 

symbols and κ symbols 
is exactly 1. There is no 
square with a κ symbol 
that is adjacent to 3 or 
more squares with a λ  

symbol.

This square has a π 
symbol.

This Square has no π 
symbol.

The square directly 
below has a τ  or π 

symbol.

This square has a λ 
symbol.

This square is adjacent 
to at least 1 square with 

a τ symbol.
Directly to the right of 
each square with a λ 

symbol must be a TRUE 
square.

There is at least 1 κ 
symbol in the bottom 

row.
This square has a κ 

symbol.

Squares directly to the 
right and left have the 

same symbol.
The square directly 

below has a π symbol.

There is exactly 1 π 
symbol in the bottom 

row.

Every square adjacent 
to a square with a π 
symbol and a square 

with a λ symbol is TRUE. 
This square has a π or κ 

symbol.

There are exactly 6 
adjacent TRUE squares.

There is no λ symbol is 
this row.

Squares directly to the 
right and left are TRUE.

There is no κ symbol in 
this row.

This square has a λ 
symbol.

The square directly 
above has a τ symbol.
Every column has at 

least 1 TRUE statement.

There are exactly 7 
squares with τ symbols.

The square directly 
to the left has no λ 
symbol. The square 

directly below has a λ 
symbol.

Every column has 
exactly 2 π symbols.

This square has a τ 
symbol. There is a 

column that contains 3 
or more squares with the 

same symbol.

There is a column 
with exactly 2 FALSE 

squares. There is exactly 
1 square with a λ 

symbol in this column.

This square has a λ or 
κ symbyol. The square 
directly above is FALSE.

Adjacent to each square 
with a τ symbol is at 

least 1 square with a τ 
symbol.

All squares with a τ 
symbol have the same 

truth value.

Some corner squares 
share the same symbol.
This column has all 4 

symbols.

Each row has at least 3 
different symbols.

Every square with a κ 
symbol is adjacent to at 
least 1 FALSE square.

Every column has 
exactly 2 κ symbols

There is a square with a 
τ symbol in this row

Each square is either TRUE or FALSE. If a square is true, then all statements in that square are true. Similarly, if a square is false, all 
statements in that square are false. Each square has exactly one symbol. (Either κ, λ, π or τ). These symbols can help you identify 
properties of the square. Your task is to find out for all squares whether they are TRUE or FALSE and which symbol they have. Adjacent 
squares include diagonals.

Due to an editorial mistake, last issue’s puzzle was incorrectly displayed, rendering it unsolvable. The board of 
editors apologises for the inconvenience, and thanks the people who pointed out the mistake. This is the correct 
version, enjoy!
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Winter Soup: Snert
author: rick

As internationalisation can go both ways, we have a recipe for a typical Dutch 
dish this time. When winter starts, my grandma always makes some nice snert, 
which is great for when it’s cold outside. Here’s a recipe.

FIGURE 1: It’s tastier than 
the picture makes it look.

As the snert can easily burn on the bottom of the pan, 
always stir regularly while the soup boils/simmers!

Put the water, toghether with the salt, split peas, cutlets, 
bay leaf and peeled celeriac, cut in cubes, in a pan, bring 

it to a boil, and let it simmer for 30 minutes. During 
this time, cut off the green leaves and the bottom of the 
leeks, and cut the remaining parts into medium-sized 
rings. Also cut up the onion and celery.

Take the cutlets out of the pan and cut it into cubes 
after removing the bone. Put the cutlets, celery, onion 
and leeks into the soup, stir and let it simmer again for 
10 minutes. Now put the bacon and rookworst in the 
pan, and let it simmer for a final 10 minutes. When this 
is finished, take the rookworst out of the pan, cut it into 
pieces, and put it back into the soup. 

The soup is finished, eet smakelijk!

Legend goes: to make the soup tastier, keep it in the fridge 
for a day, then reheat it.

2 liters of water
1 tablespoon salt
400 grams of split peas
2 chuck cutlets (~250 grams)
1 bay leaf
1/2 celeriac
1 onion
250 grams of leeks
25 grams of celery
100 grams bacon
1 rookworst
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